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Tangible Topology Through the Lens of Limits

Barbara A. Shipman and Elizabeth R. Stephenson

ABSTRACT
Point-set topology is among themost abstract branches ofmath-
ematics in that it lacks tangible notions of distance, length,
magnitude, order, and size. There is no shape, no geometry, no
algebra, and no direction. Everything we are used to visualizing
is gone. In the teaching and learning of mathematics, this can
present a conundrum. Yet, this very property makes point set
topology perfect for teaching and learning abstract mathemati-
cal concepts. It clears our minds of preconceived intuitions and
expectations and forces us to think in new and creative ways.
In this paper, we present guided investigations into topology
through questions and thinking strategies that open up fascinat-
ing problems. They are intended for faculty who already teach
or are thinking about teaching a class in topology or abstract
mathematical reasoning for undergraduates. They can be used to
build simple to challenging projects in topology, proofs, honors
programs, and research experiences.
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1. INTRODUCTION

A striking bumper sticker in Norway reads “I � topology.” This absurd statement
captures the essence and fascination of the unusual realm of topology, the mathe-
matical goggles through which we see worlds without corners or curvature, without
length, smoothness, order, or magnitude. In topology, ♥, �, �, and � are all the
same, as are various letters of the alphabet [6], or a bagel and a coffee mug.

The one feature that topology cares about in the shape ♥ is the hole in the mid-
dle. Knowing where the holes are is an interesting question, and a practical one too.
Seemingly unrelated data sets, such as those arising frommusic and electromagnetic
waves, can be analyzed using similar topological methods [10, 11]. Other familiar
components ofmodern life also reduce to topology, such asmaking schematicmaps
of train stations, coloringmaps, and untangling tangledwires. These allow for inter-
esting hands-on activities that fit nicely into a school curriculum, as outlined, for
example, in [14].

But how about point-set topology? Here, no geometry or algebra is left at all, not
even holes. All we have is a set of points and a simple recipe for creating subsets from
it. In a world where simple, everyday observations such as corners, shape, angle, and
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now even holes, no longer matter, point-set topology leaves us estranged from our
familiar and concrete senses. As faculty, we have developed abstract mental images
for working with these ideas. But how can we internalize or communicate some-
thing so seemingly intangible to our students? And why should they be interested
in such things?

For the student still clinging to the presumption that the only important areas
of mathematics are those that directly impact the real world, we note that even this
incredibly abstract discipline climbs down from its ivory tower and interacts with
us from time to time. For example, it proved quite useful to define spatial relations
independent of a distance function for use in geographic information systems [3].

But the most important impact point-set topology has is that it forces us to think
about mathematics in new and creative ways. It clears our minds of preconceived
intuitions and expectations. It shows us that things are not always as our experience
and schooling tell us they ought to be. Our minds are challenged to look for the
impossible. And in this foreign, uncharted territory, whatwe discover is astonishing.

Out of our experiences in taking and in teaching topology, proofs, and under-
graduate research projects, we have created guided discoveries for faculty seeking
to stimulate advanced, abstract, and creative thinking in undergraduate courses on
topology and mathematical reasoning.

The questions are accompanied by goals in effective thinking that the investi-
gations are designed to develop and strengthen. We recommend the book “The 5
Elements of Effective Thinking” [2] by two renowned teachers of mathematics as a
valuable companion to this paper.

For one of the authors, these investigations have been tremendously beneficial.
During an interview for admission to graduate work inmathematics, she felt under-
prepared to give insightful answers to questions from standard coursework, but
when asked about her experiences in topology, based on the discoveries presented in
thismanuscript, she impressed the interviewerwith the depth of her understanding.
Long hours of pondering the questions formulated here proved useful indeed.

The directions of thought that we take in these discoveries and the questions
they lead to have a decisively different flavor from typical textbooks on topology or
proofs. The flavor is investigative, suspenseful, and captivating. Though the ques-
tions we ask are fundamental and easily stated, we have not found them in any book
or resource on topology. To one of them (Question 7), we still do not have an answer,
despite its simple statement!

2. THE BIRTH OF TOPOLOGY

Before jumping into the strange andunknownworld of point-set topology, it is help-
ful for students to see where topology arises historically in mathematics. Although
more fundamental in nature, topology became a full-fledged field of mathematics
later than its classical counterparts of analysis, differential geometry, and modern
algebra, which look at more visibly tangible structures.
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Topology made a famous appearance in 1736, when Euler published a paper
entitled Solutio problematis ad geometriam situs pertinentis [4] (The solution of a
problem relating to the geometry of position). In this work, Euler proposed a solu-
tion to the Königsberg Bridge problem in which he removed from consideration
all apparent features of the problem that were not inherently relevant to the ques-
tion. We like to make this simple, but extremely effective, mindset explicit to our
students:

Thinking Strategy 1 (getting to the bottom): What is the real, underlying ques-
tion? Strip away everything not relevant to it.

In this famous problem, the city of Königsberg encompassed the Pregel River
and two large islands, which were linked to the mainlands by seven bridges. The
task was to devise a path through the city crossing every bridge exactly once. Euler,
realizing that this apparently geometrical question did not rely on geometry at
all, cleverly proved that the problem has no solution. In doing so, he reduced the
problem and its outcome to topology, where analytic and geometric features are
irrelevant.

Seeing this strategy of thought in the historicalwork of Euler highlights its impor-
tance and power. It is insightful for students to look for where this principle can
simplify and clarify their own thoughts.

Question 1 (applying Euler’s strategy): How can Euler’s strategy of getting to the
bottom of the question help you clarify other problems or ideas you are trying to
understand?

When students feel confused, the simple task of figuring out exactly what the
question is may help them to see a solution. This strategy may seem obvious, but it
is deceptively difficult to apply.With practice, however, it eventually becomes habit.
This habit was monumental in the historic work of Andrew Wiles in his proof of
Fermat’s Last Theorem in 1992. After an error was discovered in his 200-page proof
and months of attempts to fix it failed, Prof. Wiles sat down to settle the question
of just why it was not working. Then, in a revelation that he described as sudden
and totally unexpected, he saw what he needed to correct the proof – a very simple
“3, 5 switch.” The captivating story is made accessible to a general audience in a
documentary, the transcript of which may be found in [7].

It is noteworthy that the field of topology was born out of this “minimalist”
mode of thinking. Through the centuries that followed Euler’s solution to the
Königsberg bridge problem, mathematicians added to Euler’s foundation bit by bit,
many inspired by ideas from analysis. Cantor, Riesz, Fréchet, Hausdorff, Bernoulli,
Poincaré, and Schmidtwere especially instrumental in advancing the field, and their
contributions, like Euler’s, were specific solutions to individual problems rather
than systematic studies of the new mathematics itself. Finally, in 1912, Brouwer
amassed the disparate parts into a uniformwhole, and the field of formalized topol-
ogy was born. The mathematics that arose now had the power to move and breathe
on its own, bringing with it new questions and mysteries [8].
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3. MENTAL IMAGERY

Point-set topology is now its own discipline, separate from the concrete, everyday
world we are familiar with, but rich in beautifully expressed logic. Because of its
strange, unnatural appearance, many people – even mathematicians – have only a
passing appreciation for this lovely field of mathematics.

How can we understand topology? A common expression of understanding is
to say, “I see!” But when people talk about seeing mathematics, they often mean
somethingmore concretely related to sight, such as the beautifully intricate pictures
of Julia sets. While computer graphics have led to better insight into the world of
mathematics [5, 9],mathematical concepts such asDirichlet’s functionmay be tech-
nically impossible to draw. As mathematics becomes increasingly abstract, accurate
pictorial representation of it becomes futile. Themathematicianmust rely on awell-
developed ability to visualize foreign ideas, not with the eyes or with memories of
things previously seen, but with creative imagination and rigorous intuition [1].

Mental images should be true to the mathematical meaning and versatile for
the mind to play with. There may be aspects of the image that can be commu-
nicated verbally or on paper, but in its entirety, the image lies in the mind. One
of the authors, in her undergraduate work, understood the definitions of con-
vergence in analysis more quickly than some of her classmates because of the
mental visualization from her prior experience with topology, in particular the
notions of actual versus potential infinity [12]. When she shared these mental
images with her friends, they understood definitions on convergence more easily
as well.

4. CONCEPTS OF CLOSENESS

Since the complexities of point-set topology flow from the simple, abstract
definition of a topology, we want our students to see where the definition comes
from. So we bring them back to their study of calculus, where notions of closeness
guide our understanding.

Students will have encountered questions such as these: How close are the terms
of a sequence to the proposed limit? How close is the slope of a secant line to the
slope of the tangent? How close are the upper and lower sums in approximating an
integral? A sense of distance is so embedded in our concept of a real number that
we name the number by how close it is to zero!

More abstractly, we think of closeness to a point p by looking at a radius around
p. For example, the points at a distance less than 5 from 0 make an open inter-
val on the real line (or an open disk in the plane, or an open ball in 3-space). On
the real line, open sets are unions of open intervals. One can check that this is
equivalent to

Definition 1 (open sets of real numbers): To say that a set of real numbers S is
openmeans that for every p ∈ S, there is an open interval around p that is completely
contained in S.
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Figure 1. Three topologies on X = {a, b, c}. In each topology, the nonempty open sets are circled.

In topology, where there is no concept of distance, and so no concept of interval,
open sets will be used to test for closeness. To help students determine what “open”
should mean more abstractly, we first ask them to look at basic properties of open
sets on the real line.

Question 2 (properties of open sets in R): (a) Is the whole real line open? (b) Is
the empty set open? (c) If we take any union of open sets in R, is the result still
open? (d) If we take the intersection of finitely many open sets in R, is the result
still open? (e) If we take any intersection of open sets in R, is the result still open?

Students will find that to the first four questions, the answer is “yes.” For the
last one, they can look for a counter-example, such as the intersection of the sets
(−1/n, 1/n) as n runs over the counting numbers.

We nowhave four simple properties of open sets in the real line.Wewill use them
to create a topology on any set of points! To highlight the process for the students,
we make the thinking strategy explicit:

Thinking Strategy 2 (abstraction from the concrete): Create abstract concepts by
extracting properties of familiar things.

Now take the (true) properties of open sets inR that we found in Question 2 and
transfer them to a collection of subsets from an arbitrary set of points. This gives us
the definition of a point-set topology:

Definition 2 (a topology): A topology on a set X is a collection of subsets of X,
called open sets, such that (1) X and the empty set are open, (2) arbitrary unions
of open sets are open, and (3) finite intersections of open sets are open. The set X,
together with its topology, is called a topological space.

The rules are simple. Begin with any set X that you wish, and choose a collection
of subsets of X so that the three properties hold. This is a topology on X. Nothing
else is needed. Point-set topology and all of its intricacies rest on this definition
alone.

To help students understand this definition, we invite them to start simple, say,
with a set of three points. A few topologies they will discover are shown in Figure 1.

Thinking Strategy 3 (start simple): Look for simple examples of abstract things.
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Question 3 (simple topologies): How many topologies are there on a set of three
points? What topologies are there on a set of two points? four points? How about
one point? Can the set X be empty?

5. TOPOLOGIES ON THE REAL NUMBERS

To build a topology on the set of real numbers, all we really need is a set of objects
that has the same cardinality as the real numbers. But the real numbers are conve-
nient because they already have names! Here students can appreciate how Thinking
Strategy 1 comes into play again. We strip away everything about the real numbers
except the points and their names. What the elements are, or what properties they
have, do not matter. It is as if we took a line of marbles and dumped it into a bag
and shook it all up. Names such as “5” and “π” are now only names; they convey
no magnitude or ordering or rational or irrational character. The real “line” is no
longer a line. It is simply a set.

Wemay now create topologies onR that are completely out of line with our usual
thinking, and with a completely different flavor from the standard Euclidean topol-
ogy. All we need is a collection of open sets that satisfies the three properties in
Definition 2. How shall we begin?

ThinkingStrategy 4 (understand the extremes): Look for extreme cases of abstract
things to explore the limits of what is possible.

Question 4 (smallest and largest topologies): (a) Can a topology on R have no
open sets? If not, what are the fewest open sets it can have? (b) If we let every subset
of R be open, does this make a topology?

Students will discover that at the two extremes are the trivial topology, where
only R and the empty set are open, and the discrete topology, where every subset of
R is open. Note, for example, that in the discrete toplogy, [0, 1] is open, while in the
trivial topology, (0, 1) is not open! This will put students on alert to expect strange
things.

Let us look more closely at the discrete topology on R. The familiar sequence
(1/n) may help students feel at home. Surely they will recall that in the world of
calculus, (1/n) has a unique limit and that limit is 0! We nudge them out of their
comfort zone with a simple question.

Question 5 (a simple exploratory question): In the discrete topology on R, does
the sequence (1/n) converge to 0 and only to 0, as usual? How does the topology
help us to check?

It is fun to stop here and let the students think. Let them come to the realization
themselves that the things they relied on for intuition in the standard topology are
gone – there is no notion of distance to measure closeness to zero. (Remind them
that R is just a set, and “1/5” is only a name!) They may want to use the definition
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Figure 2. (a) A topology where (a, b, a, b, . . .) converges to b and c but not to a; (b) A topology
where (a, a, a, . . .) converges to a, b, and c; (c) In the Euclidean topology on R2, the sequence
pn = (1/n, 1/n2) converges to (0, 0).

of the limit of a sequence of real numbers. So we let them write it down. But alas,
their definition most likely refers to a distance “epsilon” and wants us to consider
the “distance from 0” of the elements of our sequence. But these notions do not exist
in topology. We can’t talk about them.

Students will realize that to check whether 0 is a limit of (1/n) in this new sce-
nario, we need to define what “limit” means in topology. First, let’s re-examine the
traditional meaning of limit, expressed in a less traditional way:

Definition 3 (limit of a sequence in R – usual meaning): Let (xk) be a sequence
in R, and let p ∈ R. To say that p is a limit of (xk) means that every open interval
(p − r, p + r), with r>0, contains all but finitely many terms of (xk).

This is the definition expressed without reference to the natural numbers that
index the terms [12]. It looks only at the radius r and howmany terms lie within the
given radius. It is helpful to pause here and let the students check that this definition
is equivalent to the standard “�,N” definition seen in their textbooks.

Notice that in Definition 3, all the concepts that are referred to, except for an
“open interval,” exist in a topology. But in a topology, we do have open sets. So we
use Thinking Strategy 2 again, replacing open intervals containing p by open sets
containing p:

Definition 4 (limit of a sequence in topology): Let (xk) be a sequence in a topo-
logical space X, and let p ∈ X. To say that p is a limit of (xk) means that every open
set containing p contains all but finitely many terms of (xk).

Using alternate language, we may refer to an open set containing p as a neighbor-
hood of p. That is, instead of checking how many terms of (xk) lie in arbitrary balls
“close around p,” we check how many terms live in arbitrary neighborhoods of p.
Figure 2 illustrates some examples.

Students can now use Definition 4 to see if 0 is a limit of the sequence (1/n) in
the discrete topology. In the discrete topology, every subset of R is open. So take
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any subset of R containing 0. Does it contain all terms of (1/n) except for finitely
many? While some neighborhoods of 0 do, such as [0, 5], others do not. For exam-
ple, neither [−1, 0] nor {0} contains any termof (1/n). So zero is not a limit of (1/n)!
Students will see too that by the same reasoning, (1/n) does not have any limit. One
now wonders,

Question 6 (limits in the discrete topology): Is there any sequence that has a limit
in the discrete topology? If so, what sequences do?

To answer Question 6, a new thinking strategy will be helpful:

Thinking Strategy 5 (satisfy a hardest condition): Among the conditions to be
satisfied in a theorem or definition, is there one that is most difficult? If there is, try
to satisfy it first.

To apply Thinking Strategy 5 to Question 6, we consider how hard it is to satisfy
Definition 4 in the discrete topology. We look at every neighborhood of 0 and hope
it contains all terms of the sequence except for finitely many. Larger neighborhoods
make this easier and smaller neighborhoods make it harder. Does 0 have a smallest
neighborhood in the discrete topology? If so, what is it?

Students will find that this neighborhood is {0}. How can a sequence have all of
its terms in {0}, except for finitely many? It does if and only if all of its terms are 0,
except for finitely many! That is, the sequence is eventually constant at 0.

Students will discover too that if {0} contains all but finitely many terms of a
sequence, then so does every other neighborhood of 0, and Definition 4 is satisfied.
Thus we discover the answer toQuestion 6: In the discrete topology, a sequence (xk)
converges to p if and only if (xk) is eventually constant at p. And, since a sequence
can be eventually constant at only one number, this limit is unique.

The considerations above lead to further observations and questions that may
be too advanced for an undergraduate course but will be interesting to consider as
part of a research project. We devote the remainder of the section to these more
challenging questions.

Eventually constant sequences converge under the most difficult conditions. If
this is the only way a limit can occur, we say that the topology has the scarce limit
property. We define it as follows:

Definition 5 (scarce limit property): To say that a topological space X has the
scarce limit property (or is a scarce limit topology) means that if a sequence in X has
a limit, then the sequence is eventually constant.

In a scarce limit topology, are limits unique? Suppose (an) is eventually con-
stant at p but converges also to q �= p. Then every neighborhood of q contains p.
So the sequence (p, q, p, q, . . .) converges to q, and this contradicts the scarce limit
property. So the limit is unique.

Another example of a scarce limit topology is the co-countable topology, where
the open sets are ∅, R, and every set whose complement is countable (that is, finite
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or countably infinite).May we reduce the topology further and still retain the scarce
limit property? A far as we know, this is an open question.

Question 7 (scarce limit topologies): Does every scarce limit topology on a set X
contain the co-countable topology on X?

6. TOPOLOGIES ON THE COUNTING NUMBERS

Here we juxtapose pairs of topologies on the counting numbers, N, for students to
consider that have contrasting limit behaviors. In doing do, we discover a property
of a topology that makes it easy to test for limits.

One such pair of topologies are what we call the stalagmite and stalactite
topologies. In the stalagmite topology, the open sets are N, ∅, and the sets Nk =
{1, 2, . . . , k}. One may imagine Nk as a stalagmite, extending upward from the floor
of a cave, with highest point k. In the stalactite topology, the open sets are N, ∅,
and the sets Nk = {k, k + 1, k + 2, . . .}. Nk may be seen as a stalactite, reaching
downward with lowest point k.

Question 8 (contrasting limit behaviors): In the stalagmite and stalactite topolo-
gies, what sequences converge to 4? For p ∈ N, what sequences converge to p? How
do the outcomes contrast?

Thinking Strategy 5 is helpful again. Is there a neighborhood of 4 in the stalag-
mite topology that is the smallest – the most difficult for a sequence to stay inside
of? Students will find that there is – the neighborhood {1, 2, 3, 4}. Any sequence (xn)
with limit 4 must have all of its terms in {1, 2, 3, 4}, except for finitely many. That is,
eventually, xn ≤ 4.

In the stalactite topology, the reverse is true: 4 has a “smallest” neighborhood,
{4, 5, . . .}. Any sequence with limit 4 must have all of its terms in {4, 5, . . .}, except
for finitely many. That is, eventually, xn ≥ 4. Students can now generalize these
outcomes to any p ∈ N.

What makes it easy to test for limits in these two topologies is that every point
has a “minimal” neighborhood – the intersection of all of its neighborhoods. To see
if a sequence satisfies Definition 4, we need only test this one neighborhood.

This strategy works in any topology where every point has a minimal neighbor-
hood. We can therefore use Thinking Strategy 2 to see this property more generally
in other topologies:

Definition 6 (minimal neighborhoods): Let p be an element of a topological space
X, and suppose that the intersection of all open sets containing p is open. We call
this intersection the minimal neighborhood of p. To say that X has the minimal
neighborhood propertymeans that every point in X has a minimal neighborhood.

As we have seen, minimal neighborhoods, when they exist, make it easy to test
for limits. To check that a sequence (xn) has limit p, we need only verify that the
minimal neighborhood of p contains all terms of (xn) except for finitely many.
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Figure 3. (a) The branches of the candelabra depict the smallest open sets in the candelabra topol-
ogy: {0} and the symmetric pairs {−n, n}; (b) Unions of the open sets in (a) create the other open sets
of the topology, such as {−789,−4,−3, 3, 4, 789}.

Another pair of topologies with contrasting limit behaviors are the single 5 topol-
ogy T5, with exactly three open sets, N, ∅, and {5}, and the excluded 5 topology T5̂,
where the open sets are N and all subsets that exclude 5. Students should check that
both of these collections of open sets satisfy Definition 2 of a topology.

We note that the excluded 5 topology is a specific example of the excluded point
topologies on arbitrary sets studied in many books on topology, for example [13].
There are also the particular point topologies, where the open sets are ∅ and all sets
that contain the chosen point.

Question9 (minimal neighborhoods and limits): Does the single 5 topology have
the minimal neighborhood property? What about the excluded 5 topology? What
sequences have limit 5 in each of these topologies? Which have limit 7, or limit
p �= 5?

In playingwith these topologies, students will see that both of themhave themin-
imal neighborhood property. The minimal neighborhood of 5 is {5} in T5 and N in
T5̂. So inT5, the sequenceswith limit 5 are eventually constant at 5, while inT5̂, every
sequence has limit 5. For 7, the situation is reversed: the minimal neighborhood of
7 in T5 is N, and in T5̂ it is {7}. Again, by testing only the minimal neighborhood,
students will find that in T5, 7 is a limit of every sequence, while in T5̂, the sequences
with limit 7 are eventually constant at 7. They can then generalize this to any limit
p �= 5.

The foregoing four topologies on N may be adapted to finite and uncountable
sets with similar contrasting outcomes.

Another topology, one that is most visually appealing in the set of all integers Z,
is the candelabra topology. Its open sets are arbitrary unions of the sets {−n, n} and
{0}, as shown in Figure 3(a); another open set is depicted in Figure 3(b).

Notice that in the candelabra topology, both 789 and −789 are limits of the con-
stant sequence (789). In fact, any sequence with limit p also has limit −p. What
makes this happen is that every open set containing p also contains −p, so that p
and −p behave as one element with two different names. If we identify p and −p as
one,Z becomesN ∪ {0}, the set of non-negative integers, and the candelabra topol-
ogy becomes the discrete topology on N ∪ {0}. In essence, the candelabra topology
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is a double image of the discrete topology, like a view of amountain and its reflection
in a lake.

All five topologies featured in this section have theminimal neighborhood prop-
erty. Are there topologies on N that do not? We leave this for the readers and their
students to explore.

Question 10 (lack of minimal neighborhoods): Are there topologies on N for
which no point has a minimal neighborhood, or where some, but not all points
have minimal neighborhoods? What about topologies on R?

7. TOPOLOGIES ON FINITE SETS

In the familiar world of applied mathematics, an oscillating sequence such as
(p, q, p, q, . . .) with p �= q does not have a limit. But in topologies we have already
seen, oscillating sequences can have limits, and perhaps many!

Our explorations will create interesting dissonance for the intuition and may be
more challenging for students. They can be used as more advanced projects for
teamwork or research experiences. We begin in topologies that are already familiar.

Question 11 (limits of an oscillating sequence): Does the sequence (3, 4, 3, 4, . . .)
have a limit in the stalagmite or stalactite topologies, or in the single 5 or excluded
5 topologies? If so, what are the limits?

From Definition 4 and the minimal neighborhood property (Definition 6), stu-
dents will find that in the stalagmite topology, any L ≥ 4 is a limit of (3, 4, 3, 4, . . .).
In the stalactite topology, the limits are 1, 2, and 3; in the single 5 topology, the limits
are any L �= 5, and in the excluded 5 topology, the unique limit is 5.

The most striking of these is perhaps the excluded 5 topology, where neither p
nor q is a limit of (p, q, p, q, . . .) but something else is. To focus in on this strange
behavior, we turn to Thinking Strategy 3 and ask,

Question 12 (looking for a simplest example): Is there a simplest topology in
which neither p nor q is a limit of (p, q, p, q, . . .) but something else is?

Let us try to create such a scenario. Our set X must have at least two distinct
elements, say 0 and−. Sincewewant (0,−, 0,−, . . .) to converge to something other
than 0 or −, we need another element, say V. Now X = {0,−,V}. Since V is a limit
of (0,−, 0,−, . . .), every neighborhood of V must contain both 0 and −. The only
such neighborhood is the whole set X. Now to prevent (0,−, 0,−, . . .) from having
0 as a limit, 0 must be in an open set that does not contain−. We know already that
V cannot be in it, so this leaves {0} open. Similarly, {−} is open. Students can check
that the five open sets X, ∅, {0}, {−}, and {0,−} make a topology on X. We call this
the winking owl topology. It is illustrated in Figure 4(a). Strange as it may seem, the
sequence (0,−, 0,−, . . .) has the unique limit V.
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Figure 4. (a) The winking owl topology; (b) An expanded eye topology; (c) A parliament of owls
topology (where just the four elements of the discrete part are circled). (b) and (c) are generalizations
of (a).

Notice that in the winking owl topology, any sequence in which both 0 and
− occur infinitely many times has V as its unique limit. Soon we will see this as
a specific example of what we call “digressive” convergence, since it converges to
something other than the terms it is composed of.

Thinking back to the excluded 5 topology from the previous section, students
will see a similarity to the winking owl topology as they consider the next question:

Question 13 (a generalized winking owl topology): How is the excluded 5 topol-
ogy a generalization of the winking owl topology? Hint: picture the winking owl
topology as an “excluded beak topology” where we think of the V as 5.

Using the hint in Question 13, and re-naming 0 as 2 and − as 3, for example,
students will see that the winking owl topology is a finite version of the excluded 5
topology. If we then extend the two “eyes” to all the counting numbers except for 5,
we obtain the excluded 5 topology.

Question 13 calls for a thinking strategy that will help us discover other new and
interesting topologies.

Thinking Strategy 6 (generalize a simplest case): When we find a simple example
with an interesting property, consider how itmay be viewed as a special case ofmore
complex structures.

To generalize the winking owl topology in a different way, suppose we expand
each of the eyes, {0} and {−}, to a larger, but still finite set and leave everything else
the same, as in Figure 4(b). We call these expanded eye topologies.

Howdoes the convergence of (0,−, 0,−, . . .) to the unique limitV in thewinking
owl topology generalize to expanded eye topologies? That is,

Question 14 (limits in expanded eye topologies): In an expanded eye topology,
what sequences have V as a unique limit but have no terms equal to V?

A good place for students to start is in writing down a few simple expanded
eye topologies, perhaps one where each eye becomes a set of just two elements.
Say we take X = {0,⊕,−,+,V}, where the open sets are X, ∅, {0,⊕}, {−,+}, and
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{0,⊕,−,+}. Students will find that as long as there is at least one element from each
“eye” that occurs infinitely many times in the sequence, the sequence will converge
only toV. Some examples are (⊕,+,+,⊕,+,+, . . .), (⊕,+, 0,⊕,+, 0, . . .), and any
sequence of infinitely many 0’s and infinitely many −’s.

To abstract these interesting limit behaviors further, we notice fromDefinition 4,
that to find the limit (or limits) of a sequence with a finite range, we care only about
the values that occur infinitely many times in the sequence. And because X is finite
in this section, any sequence in X will have a finite range.

These observations lead to a generalization of the type of convergence we dis-
covered in the winking owl topology, where a sequence with finite range has a limit
that is different from any term that appears in the sequence. Our next definition
captures this more generally for a sequence with finite range in any topology.

Definition 7 (digressive convergence): Let (xn) be a sequence with finite range in
a topological space X. The base set of (xn) is the set of all elements of X that occur
infinitely many times in the sequence. We say that two sequences are equivalent if
they have the same base set. A sequence that converges to nothing in its base set but
to at least one other element of X is said to have digressive convergence.

To help students grasp this more general definition, it is helpful to start with the
simplest example, the winking owl topology.

Question15 (digressive convergence in the simplest example): Howmany equiv-
alence classes of sequences does the winking owl topology have? Which of them
have sequences with digressive convergence?

In the winking owl topology, the base sets are few enough for students to write
down; they are the seven non-empty subsets of X = {0,−,V}. There are seven
equivalence classes of sequences, corresponding to these seven base sets. In the three
classes where the base set is a single element, the sequences are eventually constant;
they converge to the base constant and toV (these are the same when the base set is
{V}). The sequences with base sets {0,V}, {−,V}, {0,−,V}, and {0,−} have unique
limit V ; the convergence is digressive only for those with base set {0,−}.

After answering Question 15, students can consider it again, for expanded eye
topologies. It turns out that any sequence whose base set contains at least one
element from each expanded eye converges to V, and this limit is unique. The
sequences with digressive convergence are those whose base set contains at least
one element from each expanded eye and does not contain V.

To extend the winking owl topology in another way, replace the set {0,−} by
any finite set {e1, . . . , ek} with the discrete topology and augment V to a finite set
{V1, . . .Vl}. We may think of this as an arbitrary number of eyes e1, . . . , ek, each of
which belongs to a singleton open set, and multiple beaks V1, . . .Vl outside of this
discrete sub-topology. These we call parliament of owls topologies. One rendition
is shown in Figure 4(c). To create a sequence with digressive convergence in this
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topology, let the base set be any subset of {e1, . . . , ek} with two or more elements.
Any such sequence converges to every Vj but to nothing in the base set.

We conclude with a question for readers and their students to contemplate.

Question 16 (topologies with digressive convergence): What other topologies on
a finite set have sequences with digressive convergence? What about topologies on
an infinite set?

8. REFLECTIONS

Through the lens of limits, we have discovered fascinating properties of topologies
and captivating questions that, although elementary in nature, we have not seen
presented in any textbook or discussion on topology: the scarce limit property, the
minimal neighborhood property, and digressive convergence.

These investigations open up many more intriguing questions, outcomes, and
directions of thought too long to fit in these pages. We invite readers and their stu-
dents to create variations and extensions of them, for further research projects for
undergraduates in topology, proofs, honors programs, or research experiences.

Our most challenging question concerns scarce limit topologies. The definition
of a scarce limit topology – where limits are as rare as possible – arose through
investigations of the discrete topology, where obstructions to limits (the existence
of open sets) are as prevalent as possible. We saw that in every topology, a sequence
that is eventually constant must converge to that constant. This led to Question 7,
on scarce limit topologies. It is simple to state, but its solution is likely still open.

We hope the reader will enjoy pondering these ideas as much as we have. For
further reflection, Figure 5 and Questions 17 and 18 furnish a few final thoughts
that will help in answering Questions 10 and 16.

Figure 5. The topology on N ∪ {0} whose open sets are ∅, N ∪ {0}, {0}, {8}, and {0, 8}. Does it
have digressive convergence? Viewing this as an expanded beak topology will help in answering
Question 16.
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Question 17 (N versus Q): Take the standard Euclidean topology on the set of
rational numbers Q, where the open sets are unions of open intervals in Q. Is there
any point with a minimal neighborhood? Since Q is countable, this topology will
help in answering Question 10.

Question 18 (scarce limit sequences): A complementary concept to a scarce limit
topology is a scarce limit sequence. Observe that if the only neighborhood of p ∈ X
is the whole set X, then p is a limit of every sequence in X. Such points p are the
easiest to converge to; any sequence can do it! A sequence that can do nomore than
this we call a scarce limit sequence. That is, to say that a sequence (xn) in X is a
scarce limit sequencemeans that if (xn) has limit p in some topology on X, then the
only neighborhood of p is X. It is not hard to find scarce limit sequences on a finite
set. Is there a scarce limit sequence on the infinite set N? What about on R?

APPENDIX

Definitions

(1) To say S ⊆ R is open means that for every p ∈ S, there is an open interval around p that is
completely contained in S.

(2) A topology on a set X is a collection of subsets of X, called open sets, such that (1) X and the
empty set are open, (2) arbitrary unions of open sets are open, and (3) finite intersections of
open sets are open. The set X, together with its topology, is called a topological space.

(3) Let (xk) be a sequence in R, and let p ∈ R. To say that p is a limit of (xk) means that every
open interval (p − r, p + r), with r> 0, contains all but finitely many terms of (xk).

(4) Let (xk) be a sequence in a topological space X, and let p ∈ X. To say that p is a limit of (xk)
means that every open set containing p contains all but finitely many terms of (xk).

(5) To say that a topological space X has the scarce limit property (or is a scarce limit topology)
means that if a sequence in X has a limit, then the sequence is eventually constant.

(6) Let p be an element of a topological space X, and suppose that the intersection of all open
sets containing p is open. We call this intersection the minimal neighborhood of p. To say
that X has the minimal neighborhood property means that every point in X has a minimal
neighborhood.

(7) Let (xn) be a sequence with finite range in a topological spaceX. The base set of (xn) is the set
of all points inX that occur infinitelymany times in the sequence.We say that two sequences
are equivalent if they have the same base set. A sequence that converges to nothing in the
base set but to at least one other element of X is said to have digressive convergence.

Topologies:

(1) Discrete topology on X: All subsets of X are open.
(2) Trivial topology on X: Only X and ∅ are open.
(3) Co-countable topology on X: The open sets are X, ∅, and every set whose complement is

countable (that is, finite or countably infinite).
(4) Stalagmite topology on N: The open sets are N, ∅, and the sets Nk = {1, 2, . . . , k}.
(5) Stalactite topology on N: The open sets are N, ∅, and the sets Nk = {k, k + 1, k + 2, . . .}.
(6) Single 5 topology on N: Only N, ∅, and {5} are open.
(7) Excluded 5 topology on N: The open sets are N and all subsets that exclude 5.
(8) Candelabra topology on Z: The open sets are arbitrary unions of the sets {−n, n} and {0}.



16 B. A. SHIPMAN AND E. R. STEPHENSON

(9) Winking owl topology on X = {0,−,V}: The open sets are X, ∅, {0}, {−}, and {0,−}.
(10) Expanded eye topology on X = E1 ∪ E2 ∪ {V}, where E1 and E2 are disjoint non-empty

sets that do not contain V : The open sets are X, ∅, E1, E2, and E1 ∪ E2.
(11) Parliament of owls topology on E ∪ V , where E and V are disjoint non-empty sets: The

open sets are X, ∅, and all subsets of E.

Questions:

(1) How can Euler’s strategy of getting to the bottom of the question help you clarify other
problems or ideas you are trying to understand?

(2) (a) Is the whole real line open? (b) Is the empty set open? (c) If we take any union of open
sets in R, is the result still open? (d) If we take the intersection of finitely many open sets
in R, is the result still open? (e) If we take any intersection of open sets in R, is the result
still open?

(3) Howmany topologies are there on a set of three points? What topologies are there on a set
of two points? four points? How about one point? Can the set X be empty?

(4) (a) Can a topology on R have no open sets? If not, what are the fewest open sets it can
have? (b) If we let every subset of R be open, does this make a topology?

(5) In the discrete topology on R, does the sequence (1/n) converge to 0 and only to 0, as
usual? How does the topology help us to check?

(6) Is there any sequence that has a limit in the discrete topology? If so, what sequences do?
(7) Does every scarce limit topology on a set X contain the co-countable topology on X?
(8) In the stalagmite and stalactite topologies, what sequences converge to 4? For p ∈ N, what

sequences converge to p? How do the outcomes contrast?
(9) Does the single 5 topology have the minimal neighborhood property? What about the

excluded 5 topology?What sequences have limit 5 in each of these topologies?Which have
limit 7, or limit p �= 5?

(10) Are there topologies onN for which no point has aminimal neighborhood, or where some,
but not all points have minimal neighborhoods? What about topologies on R?

(11) Does the sequence (3, 4, 3, 4, . . .) have a limit in the stalagmite or stalactite topologies, or
in the single 5 or excluded 5 topologies? If so, what are the limits?

(12) Is there a simplest topology in which neither p nor q is a limit of (p, q, p, q, . . .) but
something else is?

(13) How is the excluded 5 topology a generalization of the winking owl topology? Hint: picture
the winking owl topology as an “excluded beak topology” where we think of the V as 5.

(14) In an expanded eye topology, what sequences have V as a unique limit but have no terms
equal to V?

(15) How many equivalence classes of sequences does the winking owl topology have? Which
of them have sequences with digressive convergence?

(16) What other topologies on a finite set have digressive convergence? What about topologies
on an infinite set?
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